\(\int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx\) [2339]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 153 \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{4 \left (c d^2-b d e+a e^2\right ) (d+e x)^2}-\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{8 \left (c d^2-b d e+a e^2\right )^{3/2}} \]

[Out]

-1/8*(-4*a*c+b^2)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(a*e^2
-b*d*e+c*d^2)^(3/2)+1/4*(b*d-2*a*e+(-b*e+2*c*d)*x)*(c*x^2+b*x+a)^(1/2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^2

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {734, 738, 212} \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\frac {\sqrt {a+b x+c x^2} (-2 a e+x (2 c d-b e)+b d)}{4 (d+e x)^2 \left (a e^2-b d e+c d^2\right )}-\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{8 \left (a e^2-b d e+c d^2\right )^{3/2}} \]

[In]

Int[Sqrt[a + b*x + c*x^2]/(d + e*x)^3,x]

[Out]

((b*d - 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2])/(4*(c*d^2 - b*d*e + a*e^2)*(d + e*x)^2) - ((b^2 - 4*a*
c)*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(8*(c*d^2 -
 b*d*e + a*e^2)^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))
*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[p*((b^2
- 4*a*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x], x] /; Free
Q[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m
+ 2*p + 2, 0] && GtQ[p, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{4 \left (c d^2-b d e+a e^2\right ) (d+e x)^2}-\frac {\left (b^2-4 a c\right ) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{8 \left (c d^2-b d e+a e^2\right )} \\ & = \frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{4 \left (c d^2-b d e+a e^2\right ) (d+e x)^2}+\frac {\left (b^2-4 a c\right ) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{4 \left (c d^2-b d e+a e^2\right )} \\ & = \frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{4 \left (c d^2-b d e+a e^2\right ) (d+e x)^2}-\frac {\left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{8 \left (c d^2-b d e+a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.12 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.97 \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\frac {\sqrt {a+x (b+c x)} (-2 a e+2 c d x+b (d-e x))}{4 \left (c d^2+e (-b d+a e)\right ) (d+e x)^2}+\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {-b d+2 a e-2 c d x+b e x}{2 \sqrt {c d^2+e (-b d+a e)} \sqrt {a+x (b+c x)}}\right )}{8 \left (c d^2+e (-b d+a e)\right )^{3/2}} \]

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x)^3,x]

[Out]

(Sqrt[a + x*(b + c*x)]*(-2*a*e + 2*c*d*x + b*(d - e*x)))/(4*(c*d^2 + e*(-(b*d) + a*e))*(d + e*x)^2) + ((b^2 -
4*a*c)*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x + b*e*x)/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + x*(b + c*x)])])/(
8*(c*d^2 + e*(-(b*d) + a*e))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1137\) vs. \(2(139)=278\).

Time = 0.46 (sec) , antiderivative size = 1138, normalized size of antiderivative = 7.44

method result size
default \(\text {Expression too large to display}\) \(1138\)

[In]

int((c*x^2+b*x+a)^(1/2)/(e*x+d)^3,x,method=_RETURNVERBOSE)

[Out]

1/e^3*(-1/2/(a*e^2-b*d*e+c*d^2)*e^2/(x+d/e)^2*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2
)-1/4*(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)*(-1/(a*e^2-b*d*e+c*d^2)*e^2/(x+d/e)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)
+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)+1/2*(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)*(((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e
^2-b*d*e+c*d^2)/e^2)^(1/2)+1/2*(b*e-2*c*d)/e*ln((1/2*(b*e-2*c*d)/e+c*(x+d/e))/c^(1/2)+((x+d/e)^2*c+(b*e-2*c*d)
/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)-(a*e^2-b*d*e+c*d^2)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(
(2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)/e*
(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e)))+2*c/(a*e^2-b*d*e+c*d^2)*e^2*(1/4*(2*c*(x+d/e)+(b*e-2*c*d)/e)
/c*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/8*(4*c*(a*e^2-b*d*e+c*d^2)/e^2-(b*e-2*c
*d)^2/e^2)/c^(3/2)*ln((1/2*(b*e-2*c*d)/e+c*(x+d/e))/c^(1/2)+((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*
d^2)/e^2)^(1/2))))+1/2*c/(a*e^2-b*d*e+c*d^2)*e^2*(((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^
(1/2)+1/2*(b*e-2*c*d)/e*ln((1/2*(b*e-2*c*d)/e+c*(x+d/e))/c^(1/2)+((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d
*e+c*d^2)/e^2)^(1/2))/c^(1/2)-(a*e^2-b*d*e+c*d^2)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2
)/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+
c*d^2)/e^2)^(1/2))/(x+d/e))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 438 vs. \(2 (139) = 278\).

Time = 0.71 (sec) , antiderivative size = 918, normalized size of antiderivative = 6.00 \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\left [-\frac {{\left ({\left (b^{2} - 4 \, a c\right )} e^{2} x^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} d e x + {\left (b^{2} - 4 \, a c\right )} d^{2}\right )} \sqrt {c d^{2} - b d e + a e^{2}} \log \left (\frac {8 \, a b d e - 8 \, a^{2} e^{2} - {\left (b^{2} + 4 \, a c\right )} d^{2} - {\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{2} - 4 \, \sqrt {c d^{2} - b d e + a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )} - 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 4 \, {\left (b c d^{3} + 3 \, a b d e^{2} - 2 \, a^{2} e^{3} - {\left (b^{2} + 2 \, a c\right )} d^{2} e + {\left (2 \, c^{2} d^{3} - 3 \, b c d^{2} e - a b e^{3} + {\left (b^{2} + 2 \, a c\right )} d e^{2}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{16 \, {\left (c^{2} d^{6} - 2 \, b c d^{5} e - 2 \, a b d^{3} e^{3} + a^{2} d^{2} e^{4} + {\left (b^{2} + 2 \, a c\right )} d^{4} e^{2} + {\left (c^{2} d^{4} e^{2} - 2 \, b c d^{3} e^{3} - 2 \, a b d e^{5} + a^{2} e^{6} + {\left (b^{2} + 2 \, a c\right )} d^{2} e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e - 2 \, b c d^{4} e^{2} - 2 \, a b d^{2} e^{4} + a^{2} d e^{5} + {\left (b^{2} + 2 \, a c\right )} d^{3} e^{3}\right )} x\right )}}, -\frac {{\left ({\left (b^{2} - 4 \, a c\right )} e^{2} x^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} d e x + {\left (b^{2} - 4 \, a c\right )} d^{2}\right )} \sqrt {-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )}}{2 \, {\left (a c d^{2} - a b d e + a^{2} e^{2} + {\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x\right )}}\right ) - 2 \, {\left (b c d^{3} + 3 \, a b d e^{2} - 2 \, a^{2} e^{3} - {\left (b^{2} + 2 \, a c\right )} d^{2} e + {\left (2 \, c^{2} d^{3} - 3 \, b c d^{2} e - a b e^{3} + {\left (b^{2} + 2 \, a c\right )} d e^{2}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{8 \, {\left (c^{2} d^{6} - 2 \, b c d^{5} e - 2 \, a b d^{3} e^{3} + a^{2} d^{2} e^{4} + {\left (b^{2} + 2 \, a c\right )} d^{4} e^{2} + {\left (c^{2} d^{4} e^{2} - 2 \, b c d^{3} e^{3} - 2 \, a b d e^{5} + a^{2} e^{6} + {\left (b^{2} + 2 \, a c\right )} d^{2} e^{4}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e - 2 \, b c d^{4} e^{2} - 2 \, a b d^{2} e^{4} + a^{2} d e^{5} + {\left (b^{2} + 2 \, a c\right )} d^{3} e^{3}\right )} x\right )}}\right ] \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^3,x, algorithm="fricas")

[Out]

[-1/16*(((b^2 - 4*a*c)*e^2*x^2 + 2*(b^2 - 4*a*c)*d*e*x + (b^2 - 4*a*c)*d^2)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8
*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 - 4*sqrt(c*d^2 - b*
d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c
)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)) - 4*(b*c*d^3 + 3*a*b*d*e^2 - 2*a^2*e^3 - (b^2 + 2*a*c)*d^2*e + (2*c^2*d^3
 - 3*b*c*d^2*e - a*b*e^3 + (b^2 + 2*a*c)*d*e^2)*x)*sqrt(c*x^2 + b*x + a))/(c^2*d^6 - 2*b*c*d^5*e - 2*a*b*d^3*e
^3 + a^2*d^2*e^4 + (b^2 + 2*a*c)*d^4*e^2 + (c^2*d^4*e^2 - 2*b*c*d^3*e^3 - 2*a*b*d*e^5 + a^2*e^6 + (b^2 + 2*a*c
)*d^2*e^4)*x^2 + 2*(c^2*d^5*e - 2*b*c*d^4*e^2 - 2*a*b*d^2*e^4 + a^2*d*e^5 + (b^2 + 2*a*c)*d^3*e^3)*x), -1/8*((
(b^2 - 4*a*c)*e^2*x^2 + 2*(b^2 - 4*a*c)*d*e*x + (b^2 - 4*a*c)*d^2)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sq
rt(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2
+ (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)) - 2*(b*c*d^3 + 3*a*b*d*e^2 - 2*a^2*e^3
 - (b^2 + 2*a*c)*d^2*e + (2*c^2*d^3 - 3*b*c*d^2*e - a*b*e^3 + (b^2 + 2*a*c)*d*e^2)*x)*sqrt(c*x^2 + b*x + a))/(
c^2*d^6 - 2*b*c*d^5*e - 2*a*b*d^3*e^3 + a^2*d^2*e^4 + (b^2 + 2*a*c)*d^4*e^2 + (c^2*d^4*e^2 - 2*b*c*d^3*e^3 - 2
*a*b*d*e^5 + a^2*e^6 + (b^2 + 2*a*c)*d^2*e^4)*x^2 + 2*(c^2*d^5*e - 2*b*c*d^4*e^2 - 2*a*b*d^2*e^4 + a^2*d*e^5 +
 (b^2 + 2*a*c)*d^3*e^3)*x)]

Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\int \frac {\sqrt {a + b x + c x^{2}}}{\left (d + e x\right )^{3}}\, dx \]

[In]

integrate((c*x**2+b*x+a)**(1/2)/(e*x+d)**3,x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(d + e*x)**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-b*d*e>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 693 vs. \(2 (139) = 278\).

Time = 0.31 (sec) , antiderivative size = 693, normalized size of antiderivative = 4.53 \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=-\frac {{\left (b^{2} - 4 \, a c\right )} \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right )}{4 \, {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c d^{2} + b d e - a e^{2}}} + \frac {8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} c^{2} d^{2} e - 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} b c d e^{2} + {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} b^{2} e^{3} + 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} a c e^{3} + 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} c^{\frac {5}{2}} d^{3} - 5 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} b^{2} \sqrt {c} d e^{2} - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a c^{\frac {3}{2}} d e^{2} + 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a b \sqrt {c} e^{3} + 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b c^{2} d^{3} - 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b^{2} c d^{2} e - 8 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a c^{2} d^{2} e - {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b^{3} d e^{2} + 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a b c d e^{2} + {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a b^{2} e^{3} + 4 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a^{2} c e^{3} + 2 \, b^{2} c^{\frac {3}{2}} d^{3} - b^{3} \sqrt {c} d^{2} e - 4 \, a b c^{\frac {3}{2}} d^{2} e + a b^{2} \sqrt {c} d e^{2} + 4 \, a^{2} c^{\frac {3}{2}} d e^{2}}{4 \, {\left (c d^{2} e^{2} - b d e^{3} + a e^{4}\right )} {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} e + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} d + b d - a e\right )}^{2}} \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^3,x, algorithm="giac")

[Out]

-1/4*(b^2 - 4*a*c)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + b*x + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))/(
(c*d^2 - b*d*e + a*e^2)*sqrt(-c*d^2 + b*d*e - a*e^2)) + 1/4*(8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*c^2*d^2*e
 - 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*b*c*d*e^2 + (sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*b^2*e^3 + 4*(sqrt
(c)*x - sqrt(c*x^2 + b*x + a))^3*a*c*e^3 + 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*c^(5/2)*d^3 - 5*(sqrt(c)*x
- sqrt(c*x^2 + b*x + a))^2*b^2*sqrt(c)*d*e^2 - 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*a*c^(3/2)*d*e^2 + 8*(sq
rt(c)*x - sqrt(c*x^2 + b*x + a))^2*a*b*sqrt(c)*e^3 + 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*b*c^2*d^3 - 4*(sqrt
(c)*x - sqrt(c*x^2 + b*x + a))*b^2*c*d^2*e - 8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a*c^2*d^2*e - (sqrt(c)*x -
sqrt(c*x^2 + b*x + a))*b^3*d*e^2 + 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a*b*c*d*e^2 + (sqrt(c)*x - sqrt(c*x^2
 + b*x + a))*a*b^2*e^3 + 4*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a^2*c*e^3 + 2*b^2*c^(3/2)*d^3 - b^3*sqrt(c)*d^2
*e - 4*a*b*c^(3/2)*d^2*e + a*b^2*sqrt(c)*d*e^2 + 4*a^2*c^(3/2)*d*e^2)/((c*d^2*e^2 - b*d*e^3 + a*e^4)*((sqrt(c)
*x - sqrt(c*x^2 + b*x + a))^2*e + 2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c)*d + b*d - a*e)^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^3} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (d+e\,x\right )}^3} \,d x \]

[In]

int((a + b*x + c*x^2)^(1/2)/(d + e*x)^3,x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(d + e*x)^3, x)